Extensions 1→N→G→Q→1 with N=C2 and Q=C23.D10

Direct product G=N×Q with N=C2 and Q=C23.D10
dρLabelID
C2×C23.D10160C2xC2^3.D10320,1154


Non-split extensions G=N.Q with N=C2 and Q=C23.D10
extensionφ:Q→Aut NdρLabelID
C2.1(C23.D10) = C52(C425C4)central extension (φ=1)320C2.1(C2^3.D10)320,278
C2.2(C23.D10) = C10.51(C4×D4)central extension (φ=1)320C2.2(C2^3.D10)320,279
C2.3(C23.D10) = C2.(C4×D20)central extension (φ=1)320C2.3(C2^3.D10)320,280
C2.4(C23.D10) = C10.52(C4×D4)central extension (φ=1)320C2.4(C2^3.D10)320,282
C2.5(C23.D10) = C24.3D10central extension (φ=1)160C2.5(C2^3.D10)320,571
C2.6(C23.D10) = C24.4D10central extension (φ=1)160C2.6(C2^3.D10)320,572
C2.7(C23.D10) = C24.8D10central extension (φ=1)160C2.7(C2^3.D10)320,578
C2.8(C23.D10) = (C2×Dic5).Q8central stem extension (φ=1)320C2.8(C2^3.D10)320,285
C2.9(C23.D10) = (C2×C20).28D4central stem extension (φ=1)320C2.9(C2^3.D10)320,286
C2.10(C23.D10) = (C2×C4).Dic10central stem extension (φ=1)320C2.10(C2^3.D10)320,287
C2.11(C23.D10) = (C22×C4).D10central stem extension (φ=1)320C2.11(C2^3.D10)320,289
C2.12(C23.D10) = C24.6D10central stem extension (φ=1)160C2.12(C2^3.D10)320,575
C2.13(C23.D10) = C24.9D10central stem extension (φ=1)160C2.13(C2^3.D10)320,579
C2.14(C23.D10) = C23.14D20central stem extension (φ=1)160C2.14(C2^3.D10)320,580

׿
×
𝔽